
DOI: 10.1007/s10910-006-9122-9
Journal of Mathematical Chemistry, Vol. 40, No. 1, July 2006 (© 2006)

Numerical methods for a quantum drift–diffusion
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We present the numerical methods and simulations used to solve a charge trans-
port problem in semiconductor physics. The problem is described by a Wigner–Poisson
kinetic system we have recently proposed and whose results are in good
agreement with known experiments. In this model, we consider doped semiconductor
superlattices in which electrons are supposed to occupy the lowest miniband, exchange
of lateral momentum is ignored, the electron–electron interaction is treated in the
Hartree approximation and elastic and inelastic collisions are taken into account. Non-
local drift-diffusion equations derived systematically elsewhere from the hyperbolic
limit of a kinetic Wigner–Poisson model are solved. The nonlocality of the original
quantum kinetic model equations implies that the derived drift-diffusion equations con-
tain spatial averages over one or more superlattice periods. Numerical methods are
based upon prior knowledge on physical properties of the phenomenon and have shown
to be effective in validating our formulation. Numerical solutions of the equations show
self-sustained oscillations of the current through a voltage biased superlattice, in good
agreement with known experiments.
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1. The model

Quantum kinetic descriptions of nonlinear charge transport in nanostruc-
tures give rise to difficult problems, which are costly to solve numerically [1].
Recently, a systematic way of deriving reduced balance equations for magni-
tudes such as the electron density or the local electric field, which are cheaper
to solve has been found for the case of the single-miniband Boltzmann–Poisson
transport equation with a Bhatnagar–Gross–Krook (BGK) [2] collision term, for
which drift-diffusion models of miniband transport in strongly coupled super-
lattices (SLs) have been deduced, obtaining a generalized drift-diffusion equa-
tion (GDDE) in the semiclassical limit [3,4] and a quantum DDE (QDDE) in
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the case of quantum kinetics [5]. To solve these problems numerically, the prior
knowledge of the physical phenomenon is crucial.

We present here the algorithm used to solve the QDDE, based on previous
results obtained in the GDDE. In this model, we consider the Wigner equation
for a strongly coupled SL with one miniband, we treat the electron–electron
interaction in the Hartree approximation, we ignore exchange of momentum in
the lateral directions and describe inelastic scattering within the BGK model
[3,4]. The resulting 1D model is sufficiently simple for a perturbative method to
yield analytic expressions for the coefficients in the final QDDE. In contrast with
the usual DDE’s, the QDDE contains spatial averages of the electric field and
other quantities and it is therefore nonlocal in space.

The Wigner–Poisson system for 1D electron transport in the lowest mini-
band of a strongly coupled SL is:
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Here f , n, ND, E1(k), dB, dW, l = dB + dW, W , ε, m∗, kB, T , �, νen, νimp, and
−e < 0 are the one-particle Wigner function, the 2D electron density, the 2D doping
density, the miniband dispersion relation, the barrier width, the well width, the SL
period, the electric potential, the SL permittivity, the effective mass of the electron, the
Boltzmann constant, the lattice temperature, the energy broadening of the equilib-
rium distribution due to collisions, the frequency of the inelastic collisions responsi-
ble for energy relaxation, the frequency of the elastic impurity collisions and the
electron charge, respectively. The chemical potential µ is a function of n result-
ing from solving equation (3) with the integral of the collision-broadened 3D
Fermi-Dirac distribution over the lateral components of the wave vector (k, ky, kz),
which is given by equation (4). Notice that, following Ignatov and Shashkin [6], we
have not included the effects of the electric potential in our Fermi-Dirac distribution.



R. Escobedo and L.L. Bonilla / Numerical methods for a quantum drift-diffusion equation 5

2. The quantum drift-diffusion equation

The derivation of the QDDE is explained in detail in Ref. [5]; here we only
say that the procedure consists in deriving a form of Ampère’s law for the cur-
rent density from the hyperbolic limit of the Wigner equation, by means of a
Chapman–Enskog ansatz. This leads to a linear hierarchy of equations with suit-
able solvability conditions, whose solution yields the first-order correction to the
following Ampère’s equation for the current density j (t):
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Here F = −∂W/∂x is minus the electric field, vM and FM are the electron veloc-
ity and field scales, g′ denotes dg/dn, δ = �/(2kBT ), � is the miniband width,
µ̃ = µ/(kBT ), τe = √

(νimp + νen)/νen, �̃ = �/(kBT ), and n = ND at the particular
value of the dimensionless chemical potential µ̃ = M . We have used the average

〈F〉 j (x, t) = 1
jl

∫ jl/2

− jl/2
F(x + s, t)ds (9)

the tight-binding dispersion relation E(k) = �(1 − cos kl)/2, and the usual mini-
band group velocity v(k) = (�l/2�)sin kl. If the electric field and the electron
density do not change appreciably over two SL periods, 〈F〉 j ≈ F , the spatial
averages can be ignored, and the non local QDDE (5) becomes the local gener-
alized DDE (GDDE) obtained from the semiclassical theory [3,4].

Instead of reproducing here the encumbering first-order correction, we
write the final QDDE in dimensionless form, which is much more suitable for
numerical calculations:
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where the space and time scale are x0 = εFMl/(eND) and t0 = x0/vM respec-
tively, and we have used E = F/FM , J0 = evM ND/ l, with

F2 = 〈F〉2
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, G = 1 − (1 + 2τ 2

e )F2
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.

The boundary conditions for the QDDE (10), which contains triple spa-
tial averages, need to be specified for the intervals [−2l/x0, 0] and [Nl/x0, (Nl +
2l)/x0], and not just at the points x = 0 and x = Nl/x0 (N denotes the number
of SL periods spanning the device), as in the case of the parabolic semiclassical
GDDE. Similarly, the initial condition has to be defined on the extended interval
[−2l/x0, (Nl+2l)/x0]. Note that the spatial averages in the nonlocal QDDE give
rise to finite differences of partial derivatives in the diffusion terms, and therefore
lead to a type of equations, for which little seems to be known, especially from
the numerical point of view.

3. Numerical solution of the nonlocal QDDE

The QDDE (10) must be solved together with the voltage bias condition
∫ L

0
E(x, t)dx = φL (11)

for the dimensionless electric field E and total current density J . Here L =
Nl/x0 is the length of the SL and φ = 
/(FM Nl) the dimensionless applied
voltage. We have used a constant initial condition E(x, t=0) = φ. As boundary
conditions in the intervals [−2l/x0, 0] and [L , L + 2l/x0], we adopt

J − ∂ E

∂t
= σ

σ0
E (12)

at all points [−2l/x0, 0] of the Ohmic injecting contact, with σ0 = e�/(�FM x2
0),

and zero-flux boundary conditions at the receiving contact [L , L + 2l/x0].
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The contact conductivity σ is selected so that eNDvM V (F/FM) and σ F
intersect on the second branch of V (F), in which dV/dF < 0. This is a typ-
ical boundary condition yielding self-sustained oscillations in drift-diffusion SL
models [1,3,4], from which we have extracted a useful previous knowledge.

3.1. Numerical scheme

The numerical scheme we have used is an efficient implicit scheme for par-
tial differential equations with an integral constraint, described and proved to
converge in Ref. [7]. Spatial derivatives are approximated by central differences
and a first-order implicit Euler method is used to integrate the resulting differen-
tial equations in time. This procedure results in having to solve a system of N +2
linear equations composed by N + 1 equations for the values of the electric field
E = (E0, . . . , EN ) and J at time tn+1 in terms of their previous values, and the
equation for the simple Simpson’s rule for the bias condition:

Ti,1 En+1
i−1 + Ti,2 En+1

i + Ti,3 En+1
i+1 + vi J n+1 = si , i = 0, . . . , N , (13)

En+1
0 + 4En+1

1 + 2En+1
2 + · · · + 2En+1

N−2 + 4En+1
N−1 + En+1

N = c. (14)

Here c = 3φ/�t , T is a tridiagonal matrix, and v and s are (N + 1) × 1
column vectors. They contain the nonlinear coeficients of Ei and J and the
right-hand side (RHS) of the Euler method respectively, evaluated at time tn.
Denoting by u = (1, 4, 2, . . . , 2, 4, 1) the 1×(N +1) row vector of Simpson’s rule,
the block matrix formulation of this system is T ·E + Jv = s and u ·E = c, which
can be efficiently solved by solving the following two systems with the same tri-
diagonal matrix:

T · y = s, T · z = v. (15)

In terms of y and z, we obtain

J = u · y − c

u · z
, E = y − Jz. (16)

Thus, we first obtain the LU factorization of T and then we carry out two
backsustitution processes to solve (15). Then (16) yield J and E.

The essential property of the numerical scheme is that T is a tridiagonal
matrix. To preserve this property, our idea is to write the QDDE (10) in the form
of equation (13). Thus, we need to extract the coefficients of En+1

i−1 , En+1
i , En+1

i+1 ,
and J n+1. The QDDE can be written in the following form:

Et + 〈a (1 + Ex )〉1 − D(Exx ) − bJ = 〈B(Ex )〉1 , (17)
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where
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Then, we make use of the following two observations:

• Drift terms: When we solved the GDDE, we were able to write it in the
same form of equation (17). Then we observed that the equivalent contribution
of 〈a (1 + Ex )〉1 is much greater than the contribution of 〈B(Ex )〉1, showing that
a simple explicit evaluation of this second term in the RHS of equation (17) is
a good enough approximation. However, the first term must be splitted into
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Then the first term in (19) must be added to T3,i , the second to T1,i , and
the third term must go to the RHS.

• Diffusion terms: It is computationally more effective to extract from
D(Exx ) the terms di which contribute to the matrix T and then substracting
them from each side of the equation, evaluating Exx at time tn+1 in the left-hand
side (implicitly) and at time tn in the RHS (explicitly):
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From this point of view, di (En+1
i )xx is an approximation of the contribution of

the diffusion to the implicit part of the algorithm, and Dn
i − di (En

i )xx is a low
cost estimation of the rest of the diffusion effects. After some calculations, we
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obtain di = di (1) + di (2) + di (3) + di (4), where

di (1) = κ4
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The numerical system can be written finally in the form of equation (13)
with
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where h = �x and the equations have been scaled by a factor 2kh2.
To calculate these coefficients at each time step, we observe that

Im(µ̃) = 1
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cos(mk) f̂ FD(k, µ̃)dk, (28)

where ρ0 = m∗kBT/(π�
2 ND) and f̂ FD = f FD/ND. For m = 0, using expression

(3) gives I0(µ̃) = 2πn/(ρ0 ND), so I0(M) = 2π/ρ0, and then

M
(
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(
n
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n

I2(µ̃)

I1(M)
. (29)

The integrals I1(M) and I1,2(µ̃) are calculated with the Simpson’s rule, and
the derivatives of nM and nM2 with respect to n are estimated numerically.

To do that, we first need to obtain the value of µ̃ for a given value of n,
by using (3) and (4). This must be done at each time step for each point of the
space discretization (the value of M = µ̃(n/ND) is obtained only once), and it
is one of the bottlenecks of the algorithm. We have used a Newton–Raphson
iterative method, which uses the extended Simpson’s rule to calculate n(µ̃) and
dn(µ̃)/dµ̃, the later using the analytical expression of d f̂ FD/dµ̃. The initial
guess for Newton iterations is estimated by averaging the value of µ̃ in the pre-
vious time step with the following upper and lower bounds of µ̃:

ln(en/(ρ0 ND)) < µ̃ < ln(en/(ρ0 ND) − 1) + δ. (30)
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Figure 1. (a) Current (J0 = evM ND/ l) versus time (t0 = εFM/J0) during self-oscillations for a volt-
age biased GaAs/AlAs SL, as described by the QDDE (solid line) and by the GDDE (dot-dashed
line). (b) Comparison between the fully developed dipole wave for the QDDE (solid line) and the
dipole wave for the GDDE (dashed line). (c) Dipole wave at different times during the stage in which
it is shed from the injecting contact. (d) Same as (c) for the stage in which the dipole disappears
at the anode, located at L ≈ 44. Parameter values are x0 = vM t0 = 16 nm, t0 = 0.43 ps, J0 =

6.07 × 105 A/cm2, and φ = 1.

When n is large, µ̃ is also large because f FD is a monotonically increasing func-
tion of µ and the linear estimation n(µ̃) = ρ0 ND(µ̃ − δ) can be used:

µ̃ = n

ρ0 ND
+ δ. (31)

3.2. Results

We have used the parameter values of all the superlattices reported in the
experimental references [8,9,10] with the same satisfactory result. Here, we pres-
ent first a typical case of self-sustained current oscillations accompanied by
the motion and recycling of an electric field dipole wave, corresponding to a
157-period 3.64 nm GaAs/0.93 nm AlAs SL [8] at 14 K, with � = 72 meV, ND =
4.57 × 1010 cm−2, νimp = 2νen = 18 × 1012 Hz under different values of the
dimensionless dc voltage bias φ. Cathode and anode contact conductivities are
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Figure 2. Electric field wave during self-oscillations corresponding to two different experimental
situations: (a) the SL used in figure 1, as described by the QDDE, and (b) a 130-period 4 nm
GaAs/0.6 nm AlAs SL with � = 120 meV, ND = 4.14 × 1010 cm−2, νimp = 1013 Hz νen =
0.51 × 1013 Hz, and the same conductivity 2.5 Ω−1 cm−1 at both contacts, under a dc voltage

bias of φ = 1.

2.5 and 0.62 Ω−1cm−1, respectively, and the effective mass is m∗ = (0.067dW +
0.15dB)m0/ l, where m0 = 9.109534 × 10−31 Kg is the electron rest mass.

Our numerical solution shows that the current and the field profile become
stationary for φ < 0.75 (1.2 V). For larger values of the dimensionless voltage
bias φ, the initial field profile evolves towards a stable time-periodic solution for
which J oscillates with time and the field profile shows recycling and motion of
a pulse from x = 0 to the SL end.

Figure 1 shows the self-oscillations of the current for 1.62 V (φ = 1) and
the corresponding field pulse at different times. In this figure, we compare the
solution of the GDDE corresponding to the semiclassical BGK-Poisson kinetic
equation and the solution of the QDDE for � = 18 meV, which is of the same
order as the collision frequencies. Self-oscillations frequency is also an important
magnitude to measure; in the QDDE the frequency is νQ = 25.5 Ghz, faster than
in the GDDE, νG = 20.6 Ghz (relative frequency (νQ − νG)/νG = 23.8%).
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Figure 3. (a) Downward pulses of the current during self-oscillations for the second SL used
in this paper, and (b) possible explanation of this surprising and probably unrealistic feature:
during the simulation, the velocity exhibits two maxima (solid line). Dashed line is the typical

phenomenological drift velocity used in drift-diffusion models.

Collision broadening shortens the period of the current oscillations and
therefore it reinforces the effects of the nonlocal terms in the QDDE due to
quantum effects (see [5] for details).

The second case we want to show is the upside-down case. When we were
doing the comparison between the QDDE and the GDDE for all the available
experimental data [8,9,10], we found a peculiar SL with a large value of the mini-
band width � for which the GDDE yields a surprising result: the wave of the
electric field appeared reversed and travelling in the opposite direction, and the
pulses of the current oscillations were downward. Figure 2(b) shows the elec-
tric field distribution for this case, corresponding to the current density reversed
oscillations shown in figure 3.

We are still trying to identify the features of the equation which are respon-
sible of this behavior; the reason seems to be in the fact that the velocity curve
exhibits two local maxima (instead of one) for certain values of the parameters
during the simulation (see figure 3(b)).
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In conclusion, we have presented an effective numerical algorithm for a
nonlocal quantum drift-diffusion equation based upon prior physical knowledge,
taking care of technical details to help the reader in the reproduction of our
results.
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